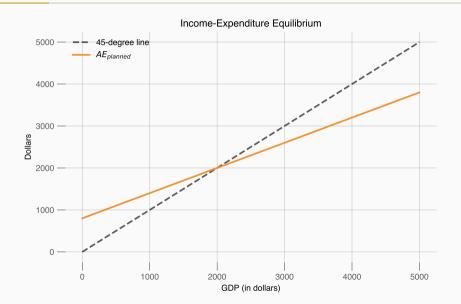
Principles of Macroeconomics: GDP and Expenditure
Class 16

Alex Houtz
October 30, 2025
University of Notre Dan

University of Notre Dame

Overview


- ► Announcements:
 - Deep breath, carry on
 - LC 11, GH 11 due Friday at 11:59pm
- ► Topics:
 - Expenditure and GDP
 - The Multiplier
- ► Readings:
 - Chapter 11, chapter 12.1-12.2

Resituating Ourselves

Recall from Tuesday:

- ▶ Consumption: $C = A + MPC \times Y^D$, where $Y^D = GDP$
- ▶ Investment: $I = I_{planned} + I_{unplanned}$
- ▶ Planned expenditure: $AE_{planned} = C + I_{planned}$
- ► GDP: $GDP = C + I = AE_{planned} + I_{unplanned}$

Keynesian Cross

Dynamic Adjustment

Recall, if $GDP > AE_{planned}$, then $I_{unplanned} > 0$

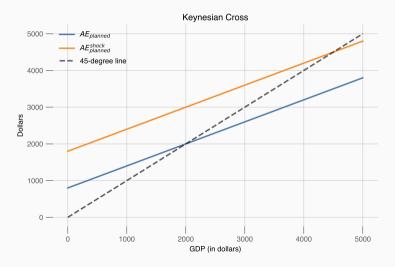
- lacktriangledown Inventory rising \longrightarrow firms cut production
- ► Firms cutting production lowers GDP and income
- ightharpoonup Economy slides down the $AE_{planned}$ curve as C falls (why does C fall?)
- Output settles at equilibrium

Or, if $GDP < AE_{planned}$, then $I_{unplanned} < 0$

- lacktriangledown Inventory falling \longrightarrow firms increase production
- ► Increasing production raises GDP and income
- ightharpoonup Economy slides up the $AE_{planned}$ curve as C increases (why does C rise?)
- ► Output settles at equilibrium

Dynamic Adjustment: A Shock

What happens if $AE_{planned}$ increases?


- ► Example: consumers are more optimistic about the future and raise their income (A increases)
- ► Example: interest rates fall, planned investment increases

Then we shift the $AE_{planned}$ curve up

- lacktriangle Given initial GDP, then GDP < AE_{planned}, so $I_{unplanned} < 0$
- ▶ Then firms expand production \longrightarrow *GDP* \uparrow , *C* \uparrow
- ► Slide up the *AE*_{planned} curve
- ▶ GDP rises next period

Practice Problem

Suppose that A=300, MPC=0.6, and $I_{planned}=500$. Suppose a shock increases A by \$1000.

The Multiplier

- ► Remember, in equilibrium: $GDP = AE_{planned}$. After manipulation, we got: $GDP = \frac{A + I_{planned}}{1 MPC}$
- ▶ How much does GDP rise when we increase *A*?
 - $\frac{dGDP}{d(A+I_{planned})} = \frac{1}{1-MPC}$, known as the multiplier
 - If MPC < 1, then the multiplier is > 1. For example, if the MPC = 0.5, then the multiplier is 2.
 - GDP rises more than one-for-one with changes in autonomous aggregate spending

► Let's think about the multiplier. Start with this equation:

$$GDP = A + MPC \times GDP + I_{planned}$$

- If A increases by \$1, then GDP rises by \$1. This is the direct effect of the shock
- C depends on GDP though, so C also rises by $1 \times MPC$. This is a feedback effect
- But GDP depends on C... etc, etc.
- ► Conclusion: GDP will rise by more than \$1

An Example

Notre Dame hosts a student movie night and orders pizza.

- (1) Notre Dame pays the pizza place \$1000
- (2) Suppose the pizza shop owner saves \$400 and spends \$600 on a roundtrip flight to LA
 - What is the owner's MPC? 0.6
 - What is the gain to GDP? $$1000 \times 0.6 = 600
- (3) Now the airline pays their 6 employees a portion of the \$600, say \$100 each. Each of them go to the gas station and buy \$35 worth of gas and save the rest.
 - What are the employees' MPCs? 0.35
 - How much additional GDP? $$1000 \times 0.6 \times 0.35 = 210

So total GDP is \$1000 + \$600 + \$210 + ...

► For simplicity, let's assume that the MPCs at each layer are the same. Then we would have:

$$GDP = [1 + MPC + MPC^{2} + MPC^{3} + ...] (A + I_{planned})$$

$$= (A + I_{planned}) + MPC \times (A + I_{planned}) + MPC^{2} \times (A + I_{planned}) + ...$$

▶ If MPC < 1, then this is a geometric series and we get:

$$GDP = \frac{A + I_{planned}}{1 - MPC}$$

Adding Government

► With government spending, GDP becomes:

$$GDP = C + I + G$$

► We can work with this equation:

$$GDP = A + MPC \times GDP + I_{planned} + G + I_{unplanned}$$

▶ Imposing equilibrium ($I_{unplanned} = 0$), we get:

$$GDP = \frac{A + I_{planned} + G}{1 - MPC}$$

Fiscal Multiplier

- ▶ If the government increases G by \$1, GDP then increases by $\frac{1}{1-MPC} > 1$
- ► This math implies that the government should spend additional funds to boost the economy
- ▶ But then why is there such a debate over government spending?
 - Particularly in the wake of the Great Recession it was not obvious to many that fiscal stimulus was helpful
- ► Two main ideas:
 - Fiscal policy has supply-side effects we have not talked about
 - ullet Fiscal policy interacts with monetary policy the Fed may increase the interest rate if government spending increases inflation, which will push down $I_{planned}$

Practice Problem

Suppose that A = 400, MPC = 0.75, $I_{planned} = 500$, and G = 200.

- (a) Write the algebraic expression for $AE_{planned}$ with and without government
- (b) Compute equilibrium GDP with and without government
- (c) Suppose that households become more optimistic about their income in the future. Which parameter does this change? If that parameter increases by 25%, compute the increase in GDP
- (d) Suppose that GDP is 200 above $AE_{planned}$. What does this imply for $I_{unplanned}$? How will production change?
- (e) Monetary policy tightens (the interest rate increases). What happens to $I_{planned}$? If $I_{planned}$ changes by 80, what is the new GDP level?
- (f) Sketch the Keynesian cross with $AE_{planned}$ before the government, with government, and post the household optimism shock. Label everything.

- (a) No government: $AE_{planned} = A + MPC \times GDP + I_{planned}$. Without government: $AE_{planned} = A + MPC \times GDP + I_{planned} + G$.
- (b) The multiplier is: $\frac{1}{1-0.75} = 4$. Without government: $GDP = 4 \times (400 + 500) = 3600$. With government: $GDP = 4 \times (400 + 500 + 200) = 4400$.
- (c) A will increase by 100. Then: $GDP_1 = 4400 + (4 \times 100) = 4800$
- (d) $I_{unplanned} > 0$. Production will fall as firms cut how much inventory they need in the future.
- (e) $I_{planned}$ will fall by 80. Then: $GDP = 4 \times (400 + 200 + 420) = 4080$
- (f) Draw the standard Keynesian Cross diagram. The initial equilibrium will be at GDP = 3600. We then shift the curve up (no change in slope) so that the new equilibrium will be GDP = 4400. Lastly, we shift the curve up again (no change in slope) to a final equilibrium of GDP = 4800.

Summary

- ► The Keynesian Cross with Shocks
- ► The Multiplier
- ► Remember: homework due Friday night
- ► Read chapter 12.1-12.2